II B.Tech - II Semester – Regular Examinations – MAY 2023

ADVANCED METAL CASTING (HONORS in MECHANICAL ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max.		
					Marks		
	UNIT-I						
1	a)	Classify the Casting? Briefly explain the	L2	CO1	7 M		
		steps involved in making a sand casting.					
	b)	Describe the different parts of an automobile	L2	CO1	7 M		
		that involve metal casting. For each part, list					
		major functional requirements and identify					
		the most suitable cast metal.					
	OR						
2	a)	Discuss the desirable properties of moulding	L2	CO1	7 M		
		sand.					
	b)	Classify and discuss the various types of	L2	CO1	7 M		
		moulding sand. What are the main factors					
		which influence the selection of particular					
		moulding sand for specific use?					
	1		1	I	1		

		UNIT-II			
3	a)	Classify the types of cores? Explain them with the help of sketches specifying their common applications.	L2	CO2	6 M
	b)	With the help of diagrams discuss the following types of patterns: Loose piece pattern, follow board pattern, Gated pattern and Match plate pattern.	L2	CO2	8 M
		OR			
4	a)	Differentiate between removable pattern sand mould casting process and disposable patterns and mould casting process.	L2	CO2	7 M
	b)	Discuss the following types of sand moulds : Green sand moulds, Dry sand moulds and Skin-drysand moulds.	L2	CO2	7 M
		UNIT-III			
5	a)	A 200 mm long down sprue has an area of cross-section of 650 mm ² where the pouring basin meets the down sprue (i.e at the beginning of the down sprue). A constant head of molten metal is maintained by the pouring basin. The molten metal flow rate is 6.5×10^5 mm/s. Considering the end of down sprue to be open to atmosphere and an acceleration due to gravity of 10^4 mm/s, the area of the down sprue in mm ² at its end (avoiding aspiration effect) should be.	L2	CO3 CO1	7 M

	b)	A sphere-shaped casting solidifies in 10 min.	L3	CO3	7 M			
		What will be the solidification time in		CO1				
		minutes for another sphere of the same						
		material, which is 8 times heavier than the						
		original casting?						
	OR							
6	a)	Given a mould size of 400 mm x 300 mm x	L3	CO3	7 M			
		(7t + 7t) mm, and a 4-cavity layout, calculate		CO1				
		the metal-to-sand weight ratio. Assume						
		casting yield per mould = 60% .						
	b)	Illustrate the macro shrinkage, centerline	L2	CO3	7 M			
		shrinkage, and corner crack in terms of		CO1				
		temperature, thermal gradient, and cooling						
		rate.						
				<u> </u>				
		UNIT-IV						
7	a)	What are different types of gates? Explain	L2	CO3	7 M			
		them with the help of sketches stating the		CO1				
		relative merits and demerits of each.						
	b)	With next skatch explain the Flements of	12	CO3	7 M			
	0)	With neat sketch explain the Elements of Gating System?		CO3	/ 1 V1			
		Gating System?		COI				
OR								
8	a)	The height of the down-sprue is 175 mm and	L3	CO3	7 M			
		its cross-sectional area at the base is 200		CO1				
		mm ² . The cross-sectional area of the						
		horizontal runner is also 200 mm ² . Assuming						

		no losses, indicate the correct choice for the time (in seconds) required to fill a mold cavity of volume 106 mm ^{3.} (Use $g = 10 \text{ m/s}^2$)			
	b)	What are some of the undesirable consequences that could result from turbulence of the metal in the gating system and mould cavity? Explain.	L2	CO3 CO1	7 M
		UNIT-V	<u> </u>	I I	
9	a)	Briefly explain the concept of process planning.	L2	CO4 CO1	7 M
	b)	What are the main considerations in selecting a suitable casting process for a given product?	L2	CO4 CO1	7 M
		OR			
10	a)	How will you determine the man, machine and material requirement of an industry to a particular Casting product?	L2	CO4 CO1	7 M
	b)	Apply the castability guidelines on additional exercises given in the appendix and suggest suitable modifications to the part geometry.	L2	CO4 CO1	7 M